Low Cost and Highly Sensitive Automated Surface Defects Identification Method of Precision Castings Using Deep Learning
JOURNAL OF NONDESTRUCTIVE EVALUATION(2024)
Shanghai Jiao Tong University
Abstract
The surface of superalloy precision castings might exhibit defects after forming, posing a significant risk to their service life, necessitating inspection during post-process. Radiographic inspection, with its extensive research in automation, can achieve efficient and accurate detection of defects. However, it is limited in surface defects detection due to limited sensitivity to non-volumetric defects and high cost. In contrast, fluorescent penetrant inspection (FPI) is highly efficient for surface defect inspection due to its low cost, high sensitivity, and speed. However, manual examination introduces variability in the results, impacting the consistency and reliability of the inspection process. Automation is needed to ensure consistency and reliability of inspection. The implementation of an automated defect identification system based on FPI using convolutional neural networks (CNNs) was systematically investigated. Among the CNN models tested, MobileNetV2 exhibited exceptional performance, achieving a remarkable recall rate of 0.992 and an accuracy of 0.992. Additionally, the effect of class imbalance on model performance was carefully examined. Furthermore, the features extracted by the model were visualized using Grad-CAM to reveal the attention of the CNN model to the fluorescent display features of defects. This study underscores the strong capability of deep learning architectures in identifying defects of precision casting components, paving the way for the automation of the entire FPI process.
MoreTranslated text
Key words
Deep learning,Surface defect,Precision casting,Fluorescent penetrant inspection
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined