WeChat Mini Program
Old Version Features

Exploration of Fractional Flow Reservation Score Based on Artificial Intelligence Post-processing for Coronary Artery Lesions in Patients with Diabetes and Coronary Heart Disease

Mei Li, Likun Zhang,Yingcui Wang, Xiaohong Xu

SLAS TECHNOLOGY(2024)

Cited 0|Views7
Abstract
In order to evaluate the relationship between coronary heart disease (CHD) and fractional flow reservation (FFR) in patients with different levels of CHD and diabetes, this paper used AI (artificial intelligence) post-processing technology to detect CHD and FFR. In this paper, 94 patients suspected of CHD who underwent coronary arteriography (CAG) in a hospital between December 2022 and February 2023 were examined by coronary computed tomography angiography (CCTA) and FFR. Based on CCTA, AI software is used to process CCTA images, diagnose coronary plaques, coronary stenosis, corresponding stenosis of different types of plaques, and FFR values. The diagnostic performance of AI was evaluated using expert diagnosis, CAG diagnosis, and FFR examination results as the "gold standard". According to the diagnosis results, the relationship between FFR and CHD patients with diabetes at different levels was studied. The research results showed that AI image diagnosis has high sensitivity, specificity, and accuracy, and has good diagnostic effects on coronary plaques, coronary stenosis, stenosis corresponding to different types of plaques, and FFR values. The fasting blood glucose levels and FFR values of three groups of CHD patients were statistically significant, and correlation analysis revealed a negative correlation between the two. Using AI for CCTA diagnosis can efficiently, conveniently, and accurately obtain the required data, improving clinical diagnostic efficiency and accuracy. The analysis of AI recognition results found that in patients with CHD, the FFR value of patients with diabetes decreased, and the FFR value was negatively correlated with the fasting blood glucose concentration, indicating that CHD patients may lead to myocardial ischemia in the blood supply area due to the decline of their coronary blood flow reserve.
More
Translated text
Key words
Diabetes with coronary heart disease,Differences in coronary artery lesions,Fractional flow reservation,Artificial intelligence post-processing,Biomedical information
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined