A Study on the Impact of Vertical Grid Parameter Perturbations in the Regional Ocean Modeling System
JOURNAL OF MARINE SCIENCE AND ENGINEERING(2024)
Sichuan Univ Sci & Engn
Abstract
In this study, the Regional Ocean Modeling System (ROMS) is employed to construct a three-dimensional barotropic ocean model with a monodirectional upper boundary and homogeneous and steady wind covering the entire computation area. Eight perturbation experiments are designed to determine the vertical grid distribution difference with high resolution at the surface and bottom. Two types are considered in the model, including removing the Coriolis force (type 1) and employing a different Coriolis force (type 2). According to the experiments, the velocity of the current in type 1 yields uncertainty, and wind energy could penetrate the upper ocean and reach the abyss. The surface velocity in type 2 is fundamentally compatible with the empirical relationship constructed by Ekman, and the curved lines of the vertical distribution of horizontal currents nearly match. For type 1, the velocity is very strong from the sea surface to the bottom. When comparing type 1 and type 2 cases, the Coriolis force obstructs the wind energy transfer into the deep ocean. In addition, the European Centre for Medium-Range Weather Forecasts (ECMWF)’s global surface wind distribution indicates that the realistic ocean upper wind boundary is similar to the numerical experiment in the Pacific and Atlantic oceans, where the wind direction is along the latitude line at the equator. In order to make the experimental situation as close as possible to the real ocean, validation experiments are conducted in this study to consider the uncertainty in the current profile at the equator. The simulation results of type 1 differ significantly from the data obtained from the real ocean. This uncertainty may transfer the signal to higher latitudes, causing incorrect simulation results, especially in the critical region. Overall, this research not only makes discoveries in physical ocean theory but also guides predictive and forecasting techniques for ocean modeling.
MoreTranslated text
Key words
Coriolis force,barotropic ocean model,Vtransform and Vstretching schemes,simulation uncertainty
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined