WeChat Mini Program
Old Version Features

Estimating Ungulate Migration Corridors from Sparse Movement Data

ECOSPHERE(2024)

Univ Wyoming

Cited 0|Views4
Abstract
AbstractMany ungulates migrate between distinct summer and winter ranges, and identifying, mapping, and conserving these migration corridors have become a focus of local, regional, and global conservation efforts. Brownian bridge movement models (BBMMs) are commonly used to empirically identify these seasonal migration corridors; however, they require location data sampled at relatively frequent intervals to obtain a robust estimate of an animal's movement path. Fitting BBMMs to sparse location data violates the assumption of conditional random movement between successive locations, overestimating the area (and width) of a migration corridor when creating individual and population‐level occurrence distributions and precluding the use of low‐frequency, or sparse, data in mapping migration corridors. In an effort to expand the utility of BBMMs to include sparse GPS data, we propose an alternative approach to model migration corridors from sparse GPS data. We demonstrate this method using GPS data collected every 2 h from four mule deer (Odocoileus hemionus) and four elk (Cervus canadensis) herds within Wyoming and Idaho. First, we used BBMMs to estimate a baseline corridor for the 2‐h data. We then subsampled the 2‐h data to one location every 12 h (a proxy for sparse data) and fitted BBMMs to the 12‐h data using a fixed motion variance (FMV) value, instead of estimating the Brownian motion variance empirically. A range of FMV values was tested to identify the value that best approximated the baseline migration corridor. FMV values within a species‐specific range (mule deer: 400–1200 m2; elk: 600–1600 m2) successfully delineated migration corridors similar to the 2‐h baseline corridors; overall, lower values delineated narrower corridors and higher values delineated wider corridors. Optimal FMV values of 800 m2 (mule deer) and 1000 m2 (elk) decreased the inflation of the 12‐h corridors relative to the 2‐h corridors from traditional BBMMs. This FMV approach thus enables using sparse movement data to approximate realistic migration corridor dimensions, providing an important alternative when movement data are collected infrequently. This approach greatly expands the number of datasets that can be used for migration corridor mapping—a useful tool for management and conservation across the globe.
More
Translated text
Key words
Brownian bridge movement model,Brownian motion variance,Cervus canadensis,conditional random walk,corridor conservation,elk,GPS collars,migration corridor,mule deer,occurrence distribution,Odocoileus hemionus
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined