Optimizing Numerical Weather Prediction Utility of the Maryland Mesonet with Observing System Simulation Experiments
WEATHER AND FORECASTING(2024)
Univ Maryland
Abstract
The Maryland Mesonet project will construct a network of 75 surface observing stations with aims that include mitigating the statewide impact of severe convective storms and improving analyses of records. The spatial configura- tion of mesonet stations is expected to affect the utility newly provided observations will have via data assimilation, making it desirable to study the effects of mesonet configuration. Furthermore, the impact associated with any observing system configuration is constrained by errors inherent to the prediction systems used to generate forecasts, which may change with future advances in data assimilation methodology, physical parameterization schemes, and resource availability. To address such possibilities, we perform sets of observing system simulation experiments using a high-resolution regional modeling system to assess the expected impact of four candidate mesonet configurations. Experiments cover seven 18-h case study events featuring moist convective regimes associated with severe weather over the state of Maryland and are performed using two versions of our experimental modeling system: a "standard-uncertainty" configuration tuned to be representative of existing convective-allowing prediction systems and a "constrained-uncertainty" configuration with reduced boundary condition and model error that reflects a possible trajectory for future prediction systems. We fi nd that the assimilation of mesonet data produces definitive improvements to analysis fi elds below 1000 m that are mediated by modeling system uncertainty. Conversely, mesonet impact on forecast verification is inconclusive and strongly variable across verification metrics. The impact of mesonet configuration appears limited by a saturation effect that caps local analysis improvements past a minimal density of observing stations.
MoreTranslated text
Key words
Severe storms,In situ atmospheric observations,Sensitivity studies,Mesoscale forecasting,Regional models
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined