WeChat Mini Program
Old Version Features

Automated Process Monitoring in Injection Molding Via Representation Learning and Setpoint Regression

2024 11TH IEEE SWISS CONFERENCE ON DATA SCIENCE, SDS 2024(2024)

ZHAW Sch Engn

Cited 0|Views4
Abstract
Online process monitoring is essential to detect failures and respond promptly in automated industrial processes such as injection molding. Traditional systems rely on experienced operators manually defining operational boundaries around a reference signal. We propose a data-driven representation that auto-tunes the sensitivity to a pre-set specificity threshold and automatically detects anomalies alongside interpretable indices that help identify root causes. Our automated system achieved an average AUC of 0.998 and detected 100 percent of the anomalies with the proposed dynamic calibration of the data-driven embedding method. The dynamic calibration, which accounted for drift, boosts the average specificity from 0.362 to 0.869. The outputs also indicate the direction and relative magnitude of characteristic deviations caused by machine parameters, including holding pressure, mold temperature, and injection speed. The AI-derived process boundaries are superior to manual annotation in tested real-world production environments.
More
Translated text
Key words
anomaly detection,time series,variational auto-encoder,root-cause analysis,explainable AI,transfer learning
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined