WeChat Mini Program
Old Version Features

FedGR: Cross-platform Federated Group Recommendation System with Hypergraph Neural Networks

Journal of Intelligent Information Systems(2024)

South China Normal University

Cited 1|Views11
Abstract
Group recommendation systems are widely applied in social media, e-commerce, and diverse platforms. These systems face challenges associated with data privacy constraints and protection regulations, impeding the sharing of user data for model improvement. To address the issue of data silos, federated learning emerges as a viable solution. However, difficulties arise due to the non-independent and non-identically distributed nature of data across different platforms, affecting performance. Furthermore, conventional federated learning often overlooks individual differences among stakeholders. In response to these challenges, we propose a pioneering cross-platform federated group recommendation system named FedGR. FedGR integrates hypergraph convolution, attention aggregation, and fully connected fusion components with federated learning to ensure exceptional model performance while preserving the confidentiality of private data. Additionally, we introduce a novel federated model aggregation strategy that prioritizes models with high training effectiveness, thereby improving overall model performance. To address individual differences, we design a temporal personalization update strategy for updating item representations, allowing local models to focus more on their individual characteristics. To evaluate FedGR, we apply our approach to three real-world datasets, demonstrating the robust capabilities of our cross-platform group recommendation system.
More
Translated text
Key words
Group recommendation,Federated learning,Data privacy,Hypergraph convolution
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined