Predicting Physical Functioning Status in Older Adults: Insights from Wrist Accelerometer Sensors and Derived Digital Biomarkers of Physical Activity
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION(2024)
College of Computer Science
Abstract
Objective Conventional physical activity (PA) metrics derived from wearable sensors may not capture the cumulative, transitions from sedentary to active, and multidimensional patterns of PA, limiting the ability to predict physical function impairment (PFI) in older adults. This study aims to identify unique temporal patterns and develop novel digital biomarkers from wrist accelerometer data for predicting PFI and its subtypes using explainable artificial intelligence techniques.Materials and Methods Wrist accelerometer streaming data from 747 participants in the National Health and Aging Trends Study (NHATS) were used to calculate 231 PA features through time-series analysis techniques-Tsfresh. Predictive models for PFI and its subtypes (walking, balance, and extremity strength) were developed using 6 machine learning (ML) algorithms with hyperparameter optimization. The SHapley Additive exPlanations method was employed to interpret the ML models and rank the importance of input features.Results Temporal analysis revealed peak PA differences between PFI and healthy controls from 9:00 to 11:00 am. The best-performing model (Gradient boosting Tree) achieved an area under the curve score of 85.93%, accuracy of 81.52%, sensitivity of 77.03%, and specificity of 87.50% when combining wrist accelerometer streaming data (WAPAS) features with demographic data.Discussion The novel digital biomarkers, including change quantiles, Fourier transform (FFT) coefficients, and Aggregated (AGG) Linear Trend, outperformed traditional PA metrics in predicting PFI. These findings highlight the importance of capturing the multidimensional nature of PA patterns for PFI.Conclusion This study investigates the potential of wrist accelerometer digital biomarkers in predicting PFI and its subtypes in older adults. Integrated PFI monitoring systems with digital biomarkers would improve the current state of remote PFI surveillance.
MoreTranslated text
Key words
aging,physical function,physical activity,accelerometer,interpretable machine learning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined