WeChat Mini Program
Old Version Features

Unsupervised Clustering Analysis of Trauma/non-Trauma Centers Using Hospital Features Including Surgical Care.

PLOS ONE(2024)

Univ Washington

Cited 0|Views7
Abstract
BACKGROUND:Injuries are a leading cause of death in the United States. Trauma systems aim to ensure all injured patients receive appropriate care. Hospitals that participate in a trauma system, trauma centers (TCs), are designated with different levels according to guidelines that dictate access to medical and research resources but not specific surgical care. This study aimed to identify patterns of injury care that distinguish different TCs and hospitals without trauma designation, non-trauma centers (non-TCs). STUDY DESIGN:We extracted hospital-level features from the state inpatient hospital discharge data in Washington state, including all TCs and non-TCs, in 2016. We provided summary statistics and tested the differences of each feature across the TC/non-TC levels. We then conducted 3 sets of unsupervised clustering analyses using the Partition Around Medoids method to determine which hospitals had similar features. Set 1 and 2 included hospital surgical care (volume or distribution) features and other features (e.g., the average age of patients, payer mix, etc.). Set 3 explored surgical care without additional features. RESULTS:The clusters only partially aligned with the TC designations. Set 1 found the volume and variation of surgical care distinguished the hospitals, while in Set 2 orthopedic procedures and other features such as age, social vulnerability indices, and payer types drove the clusters. Set 3 results showed that procedure volume rather than the relative proportions of procedures aligned more, though not completely, with TC designation. CONCLUSION:Unsupervised machine learning identified surgical care delivery patterns that explained variation beyond level designation. This research provides insights into how systems leaders could optimize the level allocation for TCs/non-TCs in a mature trauma system by better understanding the distribution of care in the system.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined