HybridCom: Improve Federated Learning Efficiency on Unstable Data
ICC(2024)
关键词
Federated Learning,Data Distribution,Changes In Distribution,Global Model,Data Privacy,Global Data,Global Distribution,Communication Resources,Client-side,Advances In Recent Years,Client Data,Federated Learning Framework,Client Participation,Federation,Gaussian Noise,Random Selection,Average Accuracy,Kernel Function,Changes In Data,Updated Model,Global Gradient,Server Side,Probability Of Participation,Limited Communication Resources,Inference Accuracy,Communication Overhead,Noise Intensity,Global Update,Absolute Indication,Concept Drift
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要