A Dual-Base Station Constraint Method to Improve Deformation Monitoring Precision Consistency in Strip Regions
Satellite Navigation(2024)
Wuhan University
Abstract
The precision of deformation monitoring with Global Navigation Satellite System (GNSS) relative positioning is significantly influenced by the distance between the monitoring and base stations. In long strip regions, the considerable differences in station spacing lead to inconsistent monitoring precision among multiple stations. This presents a challenge to accurately model and predict the deformation pattern. To tackle this issue, this paper introduces a novel dual-base station constraint method. This method integrates the baseline length constraint between two base stations into the conventional relative positioning model. The formulae of the proposed method are first derived in detail. Then the data collected at eight monitoring stations in two strip regions of 6 km and 8 km over a 28-day period are used to validate the effectiveness of the proposed method. The quantitative analysis of monitoring precision consistency indicators and hypothesis testing on the correlation between monitoring precision and station spacing are conducted. The results show that: (1) median values of the East, North, and Up consistency indicators are reduced from 2.14, 1.41, and 1.83 to 0.91, 0.67, and 0.55 and from 1.85, 1.85, and 2.32 to 0.69, 1.00, and 0.87, respectively, indicating monitoring precision consistency improvement for two case studies; (2) the absolute values of the correlation coefficients between monitoring precision and station spacing decrease from 0.99, 0.94, and 0.98 to 0.09, 0.36, and 0.32. Using the t-test with a significant level of 0.01, it is demonstrated that there is no significant correlation between monitoring precision and station spacing when employing the proposed method.
MoreTranslated text
Key words
Deformation monitoring,Strip regions,Dual-base station constraint,Monitoring precision consistency,Correlation analysis
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined