WeChat Mini Program
Old Version Features

Uncovering All Possible Dislocation Locks in Face-Centered Cubic Materials

INTERNATIONAL JOURNAL OF PLASTICITY(2024)

Toronto Metropolitan Univ

Cited 1|Views5
Abstract
Dislocation reactions and locks play an important role in the plastic deformation and mechanical behavior of crystalline materials. Various types of dislocation locks in face-centered cubic (FCC) materials have been reported in the literature pertaining to material-specific molecular-dynamic simulations and high-resolution transmission electron microscopy observations. However, it is unknown how many dislocation locks are possible, and how immobile all the dislocation locks are, with respect to each other. Here we present a discrete mathematics-based approach to reveal all possible dislocation locks in the FCC crystal structure. Totally eight types of dislocation locks are uncovered, resulting from all possible reactions of mobile/glissile (namely, perfect and Shockley partial) dislocations with (a) non-coplanar Burgers vectors which reside on two slip planes intersecting at both obtuse and acute angles and (b) coplanar Burgers vectors. We redefine the degree of dislocation lock immobility based on misorientations between non-close-packed lock planes and close-packed {111} slip planes. The subsequently derived sequences for the dislocation lock immobility and formation tendency are rationalized by the reported experimental and dislocation-dynamics simulation results.
More
Translated text
Key words
Dislocations (A),Crystal plasticity (B),Analytic functions (C),Dynamics (A),Metallic material (B)
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined