A Machine Learning Model Utilizing Delphian Lymph Node Characteristics to Predict Contralateral Central Lymph Node Metastasis in Papillary Thyroid Carcinoma: A Prospective Multicenter Study
INTERNATIONAL JOURNAL OF SURGERY(2025)
Army Med Univ
Abstract
Background:This study aimed to use artificial intelligence (AI) to integrate various radiological and clinical pathological data to identify effective predictors of contralateral central lymph node metastasis (CCLNM) in patients with papillary thyroid carcinoma (PTC) and to establish a clinically applicable model to guide the extent of surgery.Methods:This prospective cohort study included 603 patients with PTC from three centers. Clinical, pathological, and ultrasonographic data were collected and utilized to develop a machine learning (ML) model for predicting CCLNM. Model development at the internal center utilized logistic regression along with other ML algorithms. Diagnostic efficacy was compared among these methods, leading to the adoption of the final model (random forest). This model was subject to AI interpretation and externally validated at other centers.Results:CCLNM was associated with multiple pathological factors. The Delphian lymph node metastasis ratio, ipsilateral central lymph node metastasis number, and presence of ipsilateral central lymph node metastasis were independent risk factors for CCLNM. Following feature selection, a Delphian lymph node-CCLNM (D-CCLNM) model was established using the Random forest algorithm based on five attributes. The D-CCLNM model demonstrated the highest area under the curve (AUC; 0.9273) in the training cohort and exhibited high predictive accuracy, with AUCs of 0.8907 and 0.9247 in the external and validation cohorts, respectively.Conclusions:The authors developed a new, effective method that uses ML to predict CCLNM in patients with PTC. This approach integrates data from Delphian lymph nodes and clinical characteristics, offering a foundation for guiding surgical decisions, and is conveniently applicable in clinical settings.
MoreTranslated text
Key words
artificial intelligence,central lymph node metastasis,Delphian lymph node,machine learning,papillary thyroid carcinoma,personalized treatment,predictive model
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined