中文期刊发表的预测模型系统评价文献调查与评价:方法学质量和报告质量
doaj(2024)
Abstract
目的 评价中文期刊发表的预测模型系统评价文献的方法学质量和报告质量,为提高我国预测模型系统评价的整体质量提供依据。方法 计算机检索中国知网、万方数据知识服务平台、中国生物医学文献数据库和维普数据库,获取自建库至2023年7月20日发表的预测模型系统评价相关文献。由2名研究者独立筛选文献、提取资料后,采用AMSTAR(A Measurement Tool to Assess Systematic Reviews)和PRISMA 2020(Preferred Reporting Items for Systematic reviews and Meta-Analyses 2020)分别评价纳入的系统评价文献方法学质量和报告质量。结果 共纳入发表于2015—2023年的55篇系统评价文献,其中12篇为Meta分析,最常见的研究主题为心血管疾病、脑卒中和糖尿病。预测模型系统评价文献的方法学质量需改进的内容主要涉及AMSTAR的条目1、4、5、6和10,报告质量需提高的内容主要涉及PRISMA 2020的条目7、10a、12、13a-f、14、15、16a-b, 17、20b-d、21、22、23d、24a-c、25和26。纳入的系统评价文献方法学质量与报告质量具有中等程度的正相关性(r=0.58,P<0.001)。多重线性回归分析表明,较长的篇幅、近期发表和受到基金资助与更高的方法学质量相关(P<0.05);较长的篇幅、近期发表、发表为定性系统评价和受到基金资助与更高的报告质量相关,但更多的作者却与更低的报告质量相关(P<0.05)。结论 当前中文期刊发表的预测模型系统评价的方法学质量和报告质量整体较低,尚有待提高。
MoreTranslated text
Key words
prediction models,systematic reviews,reporting quality,methodological quality
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined