WeChat Mini Program
Old Version Features

GIS不同耦合方式下注入脉冲的加权IMF局放信号等效性

Jiangsu Electrical Engineering(2024)

合肥工业大学

Cited 0|Views9
Abstract
注入脉冲模拟局放是气体绝缘金属封闭组合电器(gas insulated switchgear,GIS)特高频(ultra high frequency,UHF)局放监测装置功能校验的主要方法,由于现场校验脉冲注入的辆合方式不同,模拟局放与实际局放等效性规律尚不明确,无法保证监测装置功能校验的有效性.文中首先建立126 kV GIS典型局放缺陷(尖端、悬浮、绝缘子气泡)和内/外置式脉冲注入UHF局放检测平台,并对UHF信号有效脉冲进行归一化提取;接着提出基于经验模态分解的加权本征模函数(intrinsic mode functions,IMF)信号处理方法,通过计算局放信号欧式距离平均值和最大值表征其等效性;最后与常规信号偏差法进行对比验证.研究表明,相较于常规信号等效性分析方法,加权IMF法可有效解决UHF信号波形局部差异较大的问题;使用内置传感器脉冲注入的模拟局放信号与悬浮局放信号等效性最高,局放信号的欧式距离平均值Me和最大值Ma分别为3.82%和10.28%.因此,UHF监测装置功能校验可采用恒定参数注入脉冲代替悬浮缺陷,且模拟局放可优先选择内置UHF传感器注入脉冲.文中研究可为UHF局放监测装置功能校验的脉冲注入方法提供参考.
More
Translated text
Key words
pulse injection,partial discharge simulation,empirical mode decomposition,signal equivalence analysis,intrinsic mode functions(IMF),Euclidean distance
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined