WeChat Mini Program
Old Version Features

Application of Deep Learning Methods for Beam Size Control During User Operation at the Advanced Light Source

PHYSICAL REVIEW ACCELERATORS AND BEAMS(2024)

Lawrence Berkeley Natl Lab

Cited 0|Views4
Abstract
Past research at the Advanced Light Source (ALS) provided a proof-of-principle demonstration that deep learning methods could be effectively employed to compensate for the significant perturbations to the transverse electron beam size induced by user-controlled adjustments of the insertion devices. However, incorporating these methods into the ALS' daily operations has faced notable challenges. The complexity of the system's operational requirements and the significant upkeep demands has restricted their sustained application during user operation. Here, we introduce the development of a more robust neural network (NN)-based algorithm that utilizes a novel online fine-tuning approach and its systematic integration into the day-to-day machine operations. Our analysis emphasizes the process of NN model selection, demonstrates the superior performance of the NN-based method over traditional feedback methods, and examines the effectiveness and resilience of the new algorithm during user-operation scenarios.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined