WeChat Mini Program
Old Version Features

Differentiable Self-Supervised Clustering with Intrinsic Interpretability

Neural Networks(2024)

Zhengzhou Univ

Cited 0|Views10
Abstract
Self-supervised clustering has garnered widespread attention due to its ability to discover latent clustering structures without the need for external labels. However, most existing approaches on self-supervised clustering lack of inherent interpretability in the data clustering process. In this paper, we propose a differentiable self-supervised clustering method with intrinsic interpretability (DSC2I), which provides an interpretable data clustering mechanism by reformulating clustering process based on differentiable programming. To be specific, we first design a differentiable mutual information measurement to explicitly train a neural network with analytical gradients, which avoids variational inference and learns a discriminative and compact representation. Then, an interpretable clustering mechanism based on differentiable programming is devised to transform fundamental clustering process (i.e., minimum intra-cluster distance, maximum inter-cluster distance) into neural networks and convert cluster centers to learnable neural parameters, which allows us to obtain a transparent and interpretable clustering layer. Finally, a unified optimization method is designed, in which the differentiable representation learning and interpretable clustering can be optimized simultaneously in a self-supervised manner. Extensive experiments demonstrate the effectiveness of the proposed DSC2I method compared with 16 clustering approaches.
More
Translated text
Key words
Interpretable clustering,Differentiable programming,Mutual information measurement,Self-supervised clustering
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined