Ultra-low-field Magnetization Transfer Imaging at 0.055T with Low Specific Absorption Rate
Magnetic Resonance In Medicine(2024)SCI 2区
Univ Hong Kong
Abstract
PurposeTo demonstrate magnetization transfer (MT) effects with low specific absorption rate (SAR) on ultra-low-field (ULF) MRI.MethodsMT imaging was implemented by using sinc-modulated RF pulse train (SPT) modules to provide bilateral off-resonance irradiation. They were incorporated into 3D gradient echo (GRE) and fast spin echo (FSE) protocols on a shielding-free 0.055T head scanner. MT effects were first verified using phantoms. Brain MT imaging was conducted in both healthy subjects and patients.ResultsMT effects were clearly observed in phantoms using six SPT modules with total flip angle 3600 degrees at central primary saturation bands of approximate offset +/- 786 Hz, even in the presence of large relative B0 inhomogeneity. For brain, strong MT effects were observed in gray matter, white matter, and muscle in 3D GRE and FSE imaging using six and sixteen SPT modules with total flip angle 3600 degrees and 9600 degrees, respectively. Fat, cerebrospinal fluid, and blood exhibited relatively weak MT effects. MT preparation enhanced tissue contrasts in T2-weighted and FLAIR-like images, and improved brain lesion delineation. The estimated MT SAR was 0.0024 and 0.0008 W/kg for two protocols, respectively, which is far below the US Food and Drug Administration (FDA) limit of 3.0 W/kg.ConclusionRobust MT effects can be readily obtained at ULF with extremely low SAR, despite poor relative B0 homogeneity in ppm. This unique advantage enables flexible MT pulse design and implementation on low-cost ULF MRI platforms to achieve strong MT effects in brain and beyond, potentially augmenting their clinical utility in the future.
MoreTranslated text
Key words
brain,magnetization transfer,MRI,specific absorption rate,tissue contrast,ultra-low-field
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2008
被引用30 | 浏览
2016
被引用22 | 浏览
2020
被引用172 | 浏览
2021
被引用116 | 浏览
2022
被引用12 | 浏览
2023
被引用21 | 浏览
2024
被引用10 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper