Reinforcement Learning Based Tactile Sensing for Active Point Cloud Acquisition, Recognition and Localization
IEEE Journal of Selected Topics in Signal Processing(2024)
Nantes Univ
Abstract
Traditional passive point cloud acquisition systems, such as lidars or stereo cameras, can be impractical in real-life and industrial use cases. Firstly, some extreme environments may preclude the use of these sensors. Secondly, they capture information from the entire scene instead of focusing on areas relevant to the end task, such as object recognition and localization. In contrast, we propose to train a Reinforcement Learning (RL) agent with dual objectives: i) control a robot equipped with a tactile (or laser) sensor to iteratively collect a few relevant points from the scene, and ii) recognize and localize objects from the sparse point cloud which has been collected. The iterative point sampling strategy, referred to as an active sampling strategy, is jointly trained with the classifier and the pose estimator to ensure efficient exploration that focuses on areas relevant to the recognition task. To achive these two objectives, we introduce three RL reward terms: classification, exploration, and pose estimation rewards. These rewards serve the purpose of offering guidance and supervision in their respective domain, allowing us to delve into their individual impacts and contributions. We compare the proposed framework to both active sampling strategies and passive hard-coded sampling strategies coupled with stateof- the-art point cloud classifiers. Furthermore, we evaluate our framework in realistic scenarios, considering realistic and similar objects, as well as accounting for uncertainty in the object's position in the workspace.
MoreTranslated text
Key words
Tactile perception,robotics,extreme environ- ments,3D objects recognition,active point-clouds acquisition,reinforcement learning,Tactile perception,robotics,extreme environ- ments,3D objects recognition,active point-clouds acquisition,reinforcement learning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined