Faster Algorithms for Schatten-p Low Rank Approximation
International Workshop Randomization and Approximation Techniques in Computer Science(2024)
Abstract
We study algorithms for the Schatten-$p$ Low Rank Approximation (LRA) problem. First, we show that by using fast rectangular matrix multiplication algorithms and different block sizes, we can improve the running time of the algorithms in the recent work of Bakshi, Clarkson and Woodruff (STOC 2022). We then show that by carefully combining our new algorithm with the algorithm of Li and Woodruff (ICML 2020), we can obtain even faster algorithms for Schatten-$p$ LRA. While the block-based algorithms are fast in the real number model, we do not have a stability analysis which shows that the algorithms work when implemented on a machine with polylogarithmic bits of precision. We show that the LazySVD algorithm of Allen-Zhu and Li (NeurIPS 2016) can be implemented on a floating point machine with only logarithmic, in the input parameters, bits of precision. As far as we are aware, this is the first stability analysis of any algorithm using $O((k/\sqrt{\varepsilon})\text{poly}(\log n))$ matrix-vector products with the matrix $A$ to output a $1+\varepsilon$ approximate solution for the rank-$k$ Schatten-$p$ LRA problem.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined