WeChat Mini Program
Old Version Features

Zero-shot Persuasive Chatbots with LLM-Generated Strategies and Information Retrieval

EMNLP 2024(2024)

Cited 8|Views18
Abstract
Persuasion plays a pivotal role in a wide range of applications from health intervention to the promotion of social good. Persuasive chatbots employed responsibly for social good can be an enabler of positive individual and social change. Existing methods rely on fine-tuning persuasive chatbots with task-specific training data which is costly, if not infeasible, to collect. Furthermore, they employ only a handful of pre-defined persuasion strategies. We propose PersuaBot, a zero-shot chatbot based on Large Language Models (LLMs) that is factual and more persuasive by leveraging many more nuanced strategies. PersuaBot uses an LLM to first generate natural responses, from which the strategies used are extracted. To combat hallucination of LLMs, Persuabot replace any unsubstantiated claims in the response with retrieved facts supporting the extracted strategies. We applied our chatbot, PersuaBot, to three significantly different domains needing persuasion skills: donation solicitation, recommendations, and health intervention. Our experiments on simulated and human conversations show that our zero-shot approach is more persuasive than prior work, while achieving factual accuracy surpassing state-of-the-art knowledge-oriented chatbots.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined