WeChat Mini Program
Old Version Features

Developing Transcriptomic Signatures As a Biomarker of Cellular Senescence

Shamsed Mahmud,Louise E. Pitcher, Elijah Torbenson,Paul D. Robbins,Lei Zhang,Xiao Dong

Ageing Research Reviews(2024)

Institute on the Biology of Aging and Metabolism

Cited 1|Views29
Abstract
Cellular senescence is a cell fate driven by different types of stress, where damaged cells exit from the cell cycle and, in many cases, develop an inflammatory senescence-associated secretory phenotype (SASP). Senescence has often been linked to driving aging and the onset of multiple diseases conferred by the harmful SASP, which disrupts tissue homeostasis and impairs the regular function of many tissues. This phenomenon was first observed in vitro when fibroblasts halted replication after approximately 50 population doublings. In addition to replication-induced senescence, factors such as DNA damage and oncogene activation can induce cellular senescence both in culture and in vivo. Despite their contribution to aging and disease, identifying senescent cells in vivo has been challenging due to their heterogeneity. Although senescent cells can express the cell cycle inhibitors p16Ink4a and/or p21Cip1 and exhibit SA-ß-gal activity and evidence of a DNA damage response, there is no universal biomarker for these cells, regardless of inducer or cell type. Recent studies have analyzed the transcriptomic characteristics of these cells, leading to the identification of signature gene sets like CellAge, SeneQuest, and SenMayo. Advancements in single-cell and spatial RNA sequencing now allow for analyzing senescent cell heterogeneity within the same tissue and the development of machine learning algorithms, e.g., SenPred, SenSig, and SenCID, to discover cellular senescence using RNA sequencing data. Such insights not only deepen our understanding of the genetic pathways driving cellular senescence, but also promote the development of its quantifiable biomarkers. This review summarizes the current knowledge of transcriptomic signatures of cellular senescence and their potential as in vivo biomarkers.
More
Translated text
Key words
Cellular senescence,RNA sequencing,Machine learning
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined