A Method for Cleaning Wind Power Anomaly Data by Combining Image Processing with Community Detection Algorithms
Global energy interconnection(2024)
Lanzhou Univ Technol
Abstract
Current methodologies for cleaning wind power anomaly data exhibit limited capabilities in identifying abnormal data within extensive datasets and struggle to accommodate the considerable variability and intricacy of wind farm data. Consequently, a method for cleaning wind power anomaly data by combining image processing with community detection algorithms (CWPAD-IPCDA) is proposed. To precisely identify and initially clean anomalous data, wind power curve (WPC) images are converted into graph structures, which employ the Louvain community recognition algorithm and graph- theoretic methods for community detection and segmentation. Furthermore, the mathematical morphology operation (MMO) determines the main part of the initially cleaned wind power curve images and maps them back to the normal wind power points to complete the final cleaning. The CWPAD-IPCDA method was applied to clean datasets from 25 wind turbines (WTs) in two wind farms in northwest China to validate its feasibility. A comparison was conducted using density-based spatial clustering of applications with noise (DBSCAN) algorithm, an improved isolation forest algorithm, and an image-based (IB) algorithm. The experimental results demonstrate that the CWPAD-IPCDA method surpasses the other three algorithms, achieving an approximately 7.23% higher average data cleaning rate. The mean value of the sum of the squared errors (SSE) of the dataset after cleaning is approximately 6.887 lower than that of the other algorithms. Moreover, the mean of overall accuracy, as measured by the F1-score, exceeds that of the other methods by approximately 10.49%; this indicates that the CWPAD-IPCDA method is more conducive to improving the accuracy and reliability of wind power curve modeling and wind farm power forecasting.
MoreTranslated text
Key words
Wind turbine power curve,Abnormal data cleaning,Community detection,Louvain algorithm,Mathematical morphology operation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined