Chrome Extension
WeChat Mini Program
Use on ChatGLM

Comparing Machine Learning Screening Approaches Using Clinical Data and Cytokine Profiles for COVID-19 in Resource-Limited and Resource-Abundant Settings.

Hooman H. Rashidi,Aamer Ikram,Luke T. Dang,Adnan Bashir,Tanzeel Zohra,Amna Ali, Hamza Tanvir, Mohammad Mudassar,Resmi Ravindran,Nasim Akhtar, Rana I. Sikandar, Mohammed Umer, Naeem Akhter, Rafi Butt, Brandon D. Fennell,Imran H. Khan

Scientific Reports(2024)

Cited 1|Views10
Key words
COVID-19,Cytokines,Chemokines,Binary classifier,Machine learning,FGF basic (FGF2),Eotaxin (CCL11),G-CSF (CSF3),GM-CSF (CSF2),IFN-gamma (IFNG),IL-1 beta (IL1B),IL-1ra (IL1RN),IL-1 alpha (IL1A),IL-2R alpha (IL2RA),IL3,IL-12 (p40) (IL12B),IL16,IL2,IL4,IL5,IL6,IL7,IL8 (CXCL8),IL9,GRO-alpha (CXCL1),HGF,IFN-alpha 2 (IFNA2),LIF,MCP-3 (CCL7),IL10,IL-12 (p70) (IL12A),IL13,IL15,IL17A,IP-10 (CXCL10),MCP-1 (MCAF) (CCL2),MIG (CXCL9),beta-NGF (NGF),SCF (KITLG),SCGF-beta (CLEC11A),SDF-1 alpha (CXCL12),MIP-1 alpha (CCL3),MIP-1 beta (CCL4),PDGF-BB (PDGFB),RANTES (CCL5),TNF-alpha,VEGF (VEGFA),CTACK (CCL27),MIF,TRAIL (TNFSF10),IL-18 (IL18),M-CSF (CSF1),TNF-beta (LTA)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined