WeChat Mini Program
Old Version Features

Leveraging Deep Learning As a New Approach to Layer Detection and Cloud–Aerosol Classification Using ICESat-2 Atmospheric Data

REMOTE SENSING(2024)

Univ Iowa

Cited 1|Views5
Abstract
NASA’s Ice, Cloud, and land Elevation Satellite (ICESat-2), designed for surface altimetry, plays a pivotal role in providing precise ice sheet elevation measurements. While its primary focus is altimetry, ICESat-2 also offers valuable atmospheric data. Current conventional processing methods for producing atmospheric data products encounter challenges, particularly in conditions with low signal or high background noise. The thresholding technique traditionally used for atmospheric feature detection in lidar data uses a threshold value to accept signals while rejecting noise, which may result in signal loss or false detection in the presence of excessive noise. Traditional approaches for improving feature detection, such as averaging, lead to a trade-off between detection resolution and accuracy. In addition, the discrimination of cloud from aerosol in the identified features is difficult given ICESat-2’s single wavelength and lack of depolarization measurement capability. To address these challenges, we demonstrate atmospheric feature detection and cloud–aerosol discrimination using deep learning-based semantic segmentation by a convolutional neural network (CNN). The key findings from our research are the effectiveness of a deep learning model for feature detection and cloud–aerosol classification in ICESat-2 atmospheric data and the model’s surprising capability to detect complex atmospheric features at a finer resolution than is currently possible with traditional processing techniques. We identify several examples where the traditional feature detection and cloud–aerosol discrimination algorithms struggle, like in scenarios with several layers of vertically stacked clouds, or in the presence of clouds embedded within aerosol, and demonstrate the ability of the CNN model to detect such features, resolving the boundaries between adjacent layers and detecting clouds hidden within aerosol layers at a fine resolution.
More
Translated text
Key words
ICESat-2,lidar,atmospheric layer detection,cloud-aerosol discrimination,semantic segmentation,deep learning,neural networks
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined