Performance of Second Order Particle-in-cell Methods on Modern Many-Core Architectures
semanticscholar
Abstract
The emergence of modern many-core architectures that offer an extreme level of parallelism makes methods that were previously infeasible due to computational expense now achievable. Particle-in-Cell (PIC) codes often fail to fully leverage this increased performance potential due to their high use of memory bandwidth. The use of higher order PIC methods may offer a solution to this by improving simulation accuracy significantly for an increase in computational intensity when compared to their first order counterparts. This greater expense is accompanied with only a minor increase in the amount of memory throughput required during the simulation. In this presentation we will show the performance of a second order PIC algorithm. Our implementation uses second order finite elements and particles that are represented with a collection of surrounding ghost particles. These ghost particles each have associated weights and offsets around the true particle position and therefore represent a charge distribution. We test our PIC implementation against a first order algorithm on various modern compute architectures including Intel’s Knights Landing (KNL) and NVIDIA’s Tesla P100. Our preliminary results show the viability of second order methods for PIC applications on these architectures when compared to previous generations of many-core hardware. Specifically, we see an order of magnitude improvement in performance for second order methods between the Pascal and Kepler GPU architectures, despite only a 4× improvement in theoretical peak performance between the architectures. Although these initial results show a large increase in runtime over first order methods, we hope to be able to show improved scaling behaviour and increased simulation accuracy in the future.
MoreTranslated text
求助PDF
上传PDF
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined