WeChat Mini Program
Old Version Features

ArticleImplementing Systems Modelling and Molecular Imaging to Predict the Efficacy of BCL-

M. Jarzabek, A. Lindner, S. Carberry, E. Conroy,Ian S. Miller, K. Connor, L. Shiels, E. Zanella,Federico Lucantoni,Adam Lafferty, K. White,Mariangela Meyer Villamandos, P. Dicker, W. Gallagher, S. Keek, S. Sanduleanu, P. Lambin,H. Woodruff,A. Bertotti,L. Trusolino, A. Byrne, J. Prehn

semanticscholar(2020)

Cited 0|Views1
Abstract
Resistance to chemotherapy often results from dysfunctional apoptosis, however multiple proteins with overlapping functions regulate this pathway. We sought to determine whether an extensively validated, deterministic apoptosis systems model, ‘DR_MOMP’, could be used as a stratification tool for the apoptosis sensitiser and BCL-2 antagonist, ABT-199 in patient-derived xenograft (PDX) models of colorectal cancer (CRC). Through quantitative profiling of BCL-2 family proteins, we identified two PDX models which were predicted by DR_MOMP to be sufficiently sensitive to 5-fluorouracil (5-FU)-based chemotherapy (CRC0344), or less responsive to chemotherapy but sensitised by ABT-199 (CRC0076). Treatment with ABT-199 significantly improved responses of CRC0076 PDXs to 5-FU-based chemotherapy, but showed no sensitisation in CRC0344 PDXs, as predicted from systems modelling. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) scans were performed to investigate possible early biomarkers of response. In CRC0076, a significant post-treatment decrease in mean standard uptake value was indeed evident only in the combination treatment group. Radiomic CT feature analysis of pre-treatment images in CRC0076 and CRC0344 PDXs identified features which could phenotypically discriminate between models, but were not predictive of treatment responses. Collectively our data indicate that systems modelling may identify metastatic (m)CRC patients benefitting from ABT-199, and that 18F-FDG-PET could independently support such predictions.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined