WeChat Mini Program
Old Version Features

Compute-in-Memory with 6T-RRAM Memristive Circuit for Next-Gen Neuromorphic Hardware

2024 NEURO INSPIRED COMPUTATIONAL ELEMENTS CONFERENCE, NICE(2024)

Air Force Res Lab

Cited 0|Views2
Abstract
Compute-in-memory (CIM) is primarily built into neuromorphic hardware to radically subvert the modern computing bottleneck for a range of applications, in particular for today’s artificial intelligence (AI) related workloads. Emerging computational memory technologies, such as resistive random-access memory (RRAM), offer clear advantages in CIM to perform tasks in place in the memory itself, providing significant improvements in latency and energy efficiency. In this article, we showcase an innovative memristive circuit in a 6-transistor-1-RRAM (6T1R) configuration to enable a faster yet more efficient CIM for AI applications. In practice, our 6T1R cell leverages a series of pulse-width-modulated (PWM) pulses as computing variables for energy efficiency. In a way to support AI models for simplicity and robustness, individual 6T1R cell can be programmed to encode either positive or negative weight values by measuring the direction of current through the RRAM in addition to the multi-bit computation capability. For computational accuracy, faulty RRAM can be quarantined from the network regardless of its resistance values by setting the particular cell into the high-impedance state. A proof-of-concept validation was conducted using a custom 65 nm CMOS/RRAM technology node. The parallel inter-tile communication would achieve up to 1.6 trillion operations per second (TPOS) in data throughout with a computational efficiency reached to 1.07 TOPS/W.
More
Translated text
Key words
compute-in-memory,neuromorphic hardware,edge computing,RRAM,6T1R
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined