WeChat Mini Program
Old Version Features

Observation of Floating Surface State in Obstructed Atomic Insulator Candidate NiP_2

NPJ QUANTUM MATERIALS(2024)

Southern Univ Sci & Technol SUSTech

Cited 0|Views23
Abstract
Obstructed atomic insulator is recently proposed as an unconventional material, in which electric charge centers localized at sites away from the atoms. A half-filling surface state would emerge at specific interfaces cutting through these charge centers and avoid intersecting any atoms. In this article, we utilized angle-resolved photoemission spectroscopy and density functional theory calculations to study one of the obstructed atomic insulator candidates, NiP_2. A floating surface state with large effective mass that is isolated from all bulk states is resolved on the (100) cleavage plane, distinct from previously reported surface states in obstructed atomic insulators that are merged into bulk bands. Density functional theory calculation results elucidate that this floating surface state is originated from the obstructed Wannier charge centers, albeit underwent surface reconstruction that splits the half-filled obstructed surface state. Our findings not only shed lights on the spectroscopy study of obstructed atomic insulators and obstructed surface states, but also provide possible route for development of new catalysts.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined