WeChat Mini Program
Old Version Features

Leveraging High-Performance Computing for Enhanced Lava Flow Forecasting Workflow

openalex(2024)

Cited 0|Views2
Abstract
The integration of lava flow forecasting models with satellite remote sensing techniques marks a significant advancement in quantitative hazard assessment for effusive volcanic eruptions. Within the framework of the DT-Geo project, we are developing a lava flow workflow that harnesses High-Performance Computing (HPC) capabilities, aiming to improve hazard assessment through ensemble-based and data assimilation methods. At the core of the workflow is the VLAVA code, which simulates the lava flow propagation, with temperature-dependent viscosity over a complex topography, erupting from one or more vents. The simulation runs for a given time period (order of one or more days), after which the simulated deposit is compared to the observed lava flow field and, eventually, the observations are assimilated into the model for a further simulation. The measured data include changes of the eruption source parameters and/or the extension and temperature of the lava flow field. These are derived from direct observations on the field or by remote sensing from airborne, drones or satellites (e.g.: Pléiades, EOS-ASTER, SEVIRI, MODIS, VIIRS, Landsat, Sentinel, etc.). Data assimilation is conducted using PDAF, a dedicated software offering various approaches, including ensemble-based Kalman filters, nonlinear filters, and variational methods. The model output provides the potentially impacted area by lava flows, including thickness and temperature distribution, for both a single scenario (utilized for estimating the impact of a lava flow) and an ensemble of weighted scenarios (for generating probabilistic hazard maps). We present the overarching concept of the workflow and share preliminary results obtained for historical eruptions of Mount Etna.
More
Translated text
Key words
Probabilistic Forecasting
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined