WeChat Mini Program
Old Version Features

CSD-YOLO: A Ship Detection Algorithm Based on a Deformable Large Kernel Attention Mechanism

Mathematics(2024)

Chongqing Jiaotong Univ

Cited 1|Views19
Abstract
Ship detection and identification play pivotal roles in ensuring navigation safety and facilitating efficient maritime traffic management. Aiming at ship detection in complex environments, which often faces problems such as the dense occlusion of ship targets, low detection accuracy, and variable environmental conditions, in this paper, we propose a ship detection algorithm CSD-YOLO (Context guided block module, Slim-neck, Deformable large kernel attention-You Only Look Once) based on the deformable large kernel attention (D-LKA) mechanism, which was improved based on YOLOv8 to enhance its performance. This approach integrates several innovations to bolster its performance. Initially, the utilization of the Context Guided Block module (CG block) enhanced the c2f module of the backbone network, thereby augmenting the feature extraction capabilities and enabling a more precise capture of the key image information. Subsequently, the introduction of a novel neck architecture and the incorporation of the slim-neck module facilitated more effective feature fusion, thereby enhancing both the accuracy and efficiency of detection. Furthermore, the algorithm incorporates a D-LKA mechanism to dynamically adjust the convolution kernel shape and size, thereby enhancing the model’s adaptability to varying ship target shapes and sizes. To address data scarcity in complex marine environments, the experiments utilized a fused dataset comprising the SeaShips dataset and a proprietary dataset. The experimental results demonstrate that the CSD-YOLO algorithm outperformed the YOLOv8n algorithm across all model evaluation metrics. Specifically, the precision rate (precision) was 91.5%, the recall rate (recall) was 89.5%, and the mean accuracy (mAP) was 91.5%. Compared to the benchmark algorithm, the Recall was improved by 0.7% and the mAP was improved by 0.4%. These results indicate that the CSD-YOLO algorithm can effectively meet the requirements for ship target recognition and tracking in complex marine environments.
More
Translated text
Key words
deep learning,ship detection,attention mechanism,improve YOLOv8
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined