Uncertainty Quantification and Propagation for Multiscale Materials Systems with Agglomeration and Structural Anomalies
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING(2025)
Northwestern Univ
Abstract
Advancements in manufacturing technologies have enabled material system design optimization across multiple length scales. However, microstructural anomalies (defects) that are present at different scales have not been considered comprehensively enough for systems to be robust to manufacturing variations and uncertainties. Addressing these anomalies through uncertainty quantification and propagation frameworks can help in understanding their effects on a part’s response to design engineered components that can withstand various sources of uncertainty. However, the high-dimensional design space of multiscale material systems can make these frameworks computationally intensive and data-demanding. This work presents an efficient bottom-up hierarchical uncertainty quantification and propagation framework bridging multiple scales to establish a design allowable range for material systems at the part-scale. Specifically, the hierarchical sampling framework integrates (i) an innovative microstructure characterization and reconstruction method, (ii) a mechanistic reduced-order model for fast property predictions in high-dimensional microstructural design spaces, and (iii) an efficient copula-based sampling across multiple scales that reduces the sampling budget by 95%. We demonstrate the framework on an additively manufactured polymer nanocomposite material system that exhibits agglomeration defects formed due to attractive forces between nanoparticles at the microscale and structural variations caused by the voids resulting from different processing conditions at the mesoscale.
MoreTranslated text
Key words
Uncertainty quantification and propagation,3D-printed nanocomposites,Multiscale material systems,Material defects,Copula sampling,Reduced order modeling,Dimension reduction
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined