Development of a Comprehensive Exposure-at-Risk Map for Europe: Integrating Coinciding Natural Hazards and Exposure Metrics
openalex(2025)
Abstract
The development of an Exposure-at-risk map for Europe that encompasses multiple coinciding natural hazards builds upon many previous attempts and existing portals such as TIGRA, TEMRAP, ESPON, JRC DRMKC, and GIRI to name a few, which have primarily focused on examining a few single hazards and limited exposure.The novelty of this approach lies in its integration of a myriad of hazards into a single, cohesive framework. The European Hazard Map is constructed using data from various sources, covering geophysical hazards (earthquakes, volcanoes, landslides), meteorological hazards (winds, convective storms, storms), hydrological hazards (river/pluvial floods), climatic overlaps (bushfires, droughts), and biological hazards. These hazards are modelled using both stochastic and probabilistic methods as well as historical reanalysis, offering a robust and comprehensive view of potential risks.The exposure component of this map is constructed around a handful of key Europe-wide metrics, encompassing aspects crucial to the European multi-sector context. These include tourism-based metrics such as domestic and international expenditure, hotel statistics, employment figures, as well as broader economic indicators like capital stock (particularly focusing on buildings), GDP, and critical infrastructure related to transport and energy. Additionally, agricultural production and seasonal population variations are factored in. These metrics are pivotal in assessing the potential impact of various hazards, including but not limited to earthquakes, tsunamis, winds, floods, landslides, tornadoes, hail, droughts, and bushfires.This map has been developed as part of the MYRIAD-EU project, a multi-hazard initiative, and is built using open data sources and risk analytics within the project. A significant feature of this map is its ability to demonstrate temporal and spatial overlaps. This capability allows for the visualization of combined events or the combined impact of different exposure-hazard overlaps, depending on whether the output is stochastic or probabilistic. The interface of this map serves as a crucial gateway to the MYRIAD-EU multi-hazard software scorecard approach. It also plays a pivotal role in identifying overlapping hazards within the EU, enabling better preparedness and response strategies.In summary, this Exposure-at-risk map for Europe is a significant advancement in the field of hazard assessment and risk management. It integrates a multitude of hazards and exposure metrics, offering a comprehensive and detailed view of potential risks across Europe. This map is not only a tool for current risk assessment but also a foundation for future research and development in this critical area of study.
MoreTranslated text
Key words
Environmental Risks
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined