WeChat Mini Program
Old Version Features

Comquest: Large Scale User Comment Crawling and Integration

COMPANION OF THE 2024 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD-COMPANION 2024(2024)

Temple Univ

Cited 2|Views8
Abstract
User-generated content like comments are valuable sources for various downstream applications. However, access to user comments data is often limited to specific platforms or outlets, which imposes a great limitation on the available data, and may not provide a representative sample of opinions from a diverse population on a particular event. This paper presents a comment crawling system that leverages the Web API of popular third-party commenting systems to collect comments from a large number of websites integrated with the commenting systems. Given a target page, the crawling system utilizes a deep learning model to extract API parameters and send HTTP requests to the API to retrieve comments. The system, Comquest, that we propose to demo is news-oriented and crawls comments regarding specific news topics/stories. Comquest can work with any website that allows commenting. Comquest provides a useful tool for collecting comments that represent a wider range of opinions, stances, and sentiments from websites on a global scale.
More
Translated text
Key words
comments,crawling,Web API
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined