Reservoir Characterisation Using Hybrid Optimisation of Genetic Algorithm and Pattern Search to Estimate Porosity and Impedance Volume from Post-Stack Seismic Data: A Case Study
Journal of Earth System Science(2024)
Banaras Hindu University
Abstract
In the current study, a seismic inversion based on a hybrid optimisation of genetic algorithm (GA) and pattern search (PS) is carried out. The GA is an approach to global optimisation technique that always converges to the global optimum solution but takes much time to converge. On the other hand, the PS is a local optimisation technique and can converge at local or global optimum solution depending on the starting model. If these two techniques are used together (here termed hybrid optimisation), they can enhance one's benefit and reduce the drawbacks of others. The present study developed a methodology to combine GA and PS in a single flowchart and utilise seismic reflection data exclusively to predict porosity and impedance volume in inter-well regions. The algorithms are initially tested on synthetically created data based on the wedge model, the coal coking model, and the 1D convolution model. The performance of the algorithm is remarkably acceptable, according to the error analysis and statistical analysis between the inverted and the anticipated results. After that, the field post-stack seismic data from the Blackfoot field, Canada, is transformed into impedance and porosity using a developed hybrid optimisation technique. The inverted/predicted sections show very high-resolution subsurface information with impedance varying from 6000 to 14000 m/s×g/cc and porosity varying from 5 to 40
MoreTranslated text
Key words
Seismic inversion,genetic algorithm,pattern search method,hybrid optimisation,acoustic impedance,porosity
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined