Experimental Direct Quantum Fidelity Learning Via a Data-Driven Approach
Physical Review Letters(2024)
Southern Univ Sci & Technol
Abstract
Fidelity estimation is an important technique for evaluating prepared quantum states in noisy quantum devices. A recent theoretical work proposed a frugal approach called neural quantum fidelity estimation (NQFE) [X. Zhang et al., Phys. Rev. Lett. 127, 130503 (2021).PRLTAO0031-900710.1103/PhysRevLett.127.130503]. While this requires a much smaller number of measurement operators than full quantum state tomography, it uses a weight-based floating measurement strategy that predetermines the top global Pauli operators that contribute the most to the fidelity and uses discrete fidelity intervals as predictions. In this Letter, we develop a measurement-fixed NQFE based on a transformer model which requires less measurement cost and can output continuous estimates of fidelity. Here we further experimentally apply the NQFE in a realistic situation using a nuclear spin quantum processor. We prepare the ground states of local Hamiltonians and arbitrary states and investigate how to estimate their fidelity with reference states, and we compare the fidelity estimation strategy with our and the original NQFE to conventional tomography. It is shown that NQFE can estimate the fidelity with comparable accuracy to the tomography approach. In the future, NQFE will become an important tool for benchmarking quantum states ahead of the advent of well-trusted fault-tolerant quantum computers.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined