WeChat Mini Program
Old Version Features

Modelling Energy Partition Patterns of Growing Pigs Fed Diets with Different Net Energy Levels Based on Machine Learning

Yuansen Yang,Qile Hu, Li Wang,Lu Wang, Nuo Xiao, Xinwei Dong, Shijie Liu,Changhua Lai,Shuai Zhang

JOURNAL OF ANIMAL SCIENCE(2024)

State Key Laboratory of Animal Nutrition and Feeding

Cited 0|Views35
Abstract
The objectives of this study were to evaluate the energy partition patterns of growing pigs fed diets with different net energy (NE) levels based on machine learning methods, and to develop prediction models for the NE requirement of growing pigs. Twenty-four Duroc × Landrace × Yorkshire crossbred barrows with an initial body weight of 24.90 ± 0.46 kg were randomly assigned to 3 dietary treatments, including the low NE group (2,325 kcal/kg), the medium NE group (2,475 kcal/kg), and the high NE group (2,625 kcal/kg). The total feces and urine produced from each pig during each period were collected, to calculate the NE intake, NE retained as protein (NEp), and NE retained as lipid (NEl). A total of 240 sets of data on the energy partition patterns of each pig were collected, 75% of the data in the dataset was randomly selected as the training dataset, and the remaining 25% was set as the testing dataset. Prediction models for the NE requirement of growing pigs were developed using algorithms including multiple linear regression (MR), artificial neural networks (ANN), k-nearest neighbor (K-NN), and random forest (RF), and the prediction performance of these models was compared on the testing dataset. The results showed pigs in the low NE group showed a lower average daily gain, lower average daily feed intake, lower NE intake, but greater feed conversion ratio compared to pigs in the high NE group in most growth stages. In addition, pigs in the three treatment groups did not show a significant difference in NEp in all growth stages, while pigs in the medium and high NE groups showed greater NEl compared to pig in the low NE group in growth stages from 25 to 55 kg (P < 0.05). Among the developed prediction models for NE intake, NEp, and NEl, the ANN models demonstrated the most optimal prediction performance with the smallest root mean square error (RMSE) and the largest R2, while the RF models had the worst prediction performance with the largest RMSE and the smallest R2. In conclusion, diets with varied NE concentrations within a certain range did not affect the NEp of growing pigs, and the models developed with the ANN algorithm could accurately achieve the NE requirement prediction in growing pigs.
More
Translated text
Key words
artificial neural networks,energy partition pattern,growing pig,machine learning,net energy requirement
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined