Direct Observation of Enhanced Iodine Binding within a Series of Functionalized Metal-Organic Frameworks with Exceptional Irradiation Stability.

Journal of the American Chemical Society(2024)

引用 0|浏览0
暂无评分
摘要
Optimization of active sites and stability under irradiation are important targets for sorbent materials that might be used for iodine (I2) storage. Herein, we report the direct observation of I2 binding in a series of Cu(II)-based isostructural metal-organic frameworks, MFM-170, MFM-172, MFM-174, NJU-Bai20, and NJU-Bai21, incorporating various functional groups (-H, -CH3, - NH2, -C≡C-, and -CONH-, respectively). MFM-170 shows a reversible uptake of 3.37 g g-1 and a high packing density of 4.41 g cm-3 for physiosorbed I2. The incorporation of -NH2 and -C≡C- moieties in MFM-174 and NJU-Bai20, respectively, enhances the binding of I2, affording uptakes of up to 3.91 g g-1. In addition, an exceptional I2 packing density of 4.83 g cm-3 is achieved in MFM-174, comparable to that of solid iodine (4.93 g cm-3). In situ crystallographic studies show the formation of a range of supramolecular and chemical interactions [I···N, I···H2N] and [I···C≡C, I-C═C-I] between -NH2, -C≡C- sites, respectively, and adsorbed I2 molecules. These observations have been confirmed via a combination of solid-state nuclear magnetic resonance, X-ray photoelectron, and Raman spectroscopies. Importantly, γ-irradiation confirmed the ultraresistance of MFM-170, MFM-174, and NJU-Bai20 suggesting their potential as efficient sorbents for cleanup of radioactive waste.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要