WeChat Mini Program
Old Version Features

Neural Network Compression Based on Tensor Ring Decomposition

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS(2024)

Hunan Univ

Cited 0|Views47
Abstract
Deep neural networks (DNNs) have made great breakthroughs and seen applications in many domains. However, the incomparable accuracy of DNNs is achieved with the cost of considerable memory consumption and high computational complexity, which restricts their deployment on conventional desktops and portable devices. To address this issue, low-rank factorization, which decomposes the neural network parameters into smaller sized matrices or tensors, has emerged as a promising technique for network compression. In this article, we propose leveraging the emerging tensor ring (TR) factorization to compress the neural network. We investigate the impact of both parameter tensor reshaping and TR decomposition (TRD) on the total number of compressed parameters. To achieve the maximal parameter compression, we propose an algorithm based on prime factorization that simultaneously identifies the optimal tensor reshaping and TRD. In addition, we discover that different execution orders of the core tensors result in varying computational complexities. To identify the optimal execution order, we construct a novel tree structure. Based on this structure, we propose a top-to-bottom splitting algorithm to schedule the execution of core tensors, thereby minimizing computational complexity. We have performed extensive experiments using three kinds of neural networks with three different datasets. The experimental results demonstrate that, compared with the three state-of-the-art algorithms for low-rank factorization, our algorithm can achieve better performance with much lower memory consumption and lower computational complexity.
More
Translated text
Key words
Neural network compression,tensor ring (TR) factorization
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined