APACHE: A Processing-Near-Memory Architecture for Multi-Scheme Fully Homomorphic Encryption

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Fully Homomorphic Encryption (FHE) allows one to outsource computation over encrypted data to untrusted servers without worrying about data breaching. Since FHE is known to be extremely computationally-intensive, application-specific accelerators emerged as a powerful solution to narrow the performance gap. Nonetheless, due to the increasing complexities in FHE schemes per se and multi-scheme FHE algorithm designs in end-to-end privacy-preserving tasks, existing FHE accelerators often face the challenges of low hardware utilization rates and insufficient memory bandwidth. In this work, we present APACHE, a layered near-memory computing hierarchy tailored for multi-scheme FHE acceleration. By closely inspecting the data flow across different FHE schemes, we propose a layered near-memory computing architecture with fine-grained functional unit design to significantly enhance the utilization rates of both computational resources and memory bandwidth. In addition, we propose a multi-scheme operator compiler to efficiently schedule high-level FHE computations across lower-level functional units. In the experiment, we evaluate APACHE on various FHE applications, such as Lola MNIST, HELR, fully-packed bootstrapping, and fully homomorphic processors. The results illustrate that APACHE outperforms the state-of-the-art ASIC FHE accelerators by 2.4x to 19.8x over a variety of operator and application benchmarks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要