Enabling Advanced Snow Physics Within Land Surface Models Through an Interoperable Model‐Physics Coupling Framework
Journal of Advances in Modeling Earth Systems(2024)
Univ Maryland
Abstract
AbstractAccurate estimation of snow accumulation and melt is a critical part of decision‐making in snow‐dominated watersheds. In this study, we demonstrate a flexible methodology to couple a detailed snow model, Crocus, separately to two different land surface models (LSMs), Noah‐MP and Noah. The original LSMs and the coupled models (Noah‐MP‐Crocus and Noah‐Crocus) are used to simulate snow depth, snow water equivalent, and other water and energy states and fluxes. The results of simulations are compared against a wide range of independent gridded and point scale reference data sets. Our results show that coupling the detailed snow model, Crocus, with the LSMs improves the snow depth and snow water equivalent relative to independent observations. Overall, larger improvements are obtained with coupling Crocus to the Noah LSM, with the coupled Noah‐Crocus configuration reducing the RMSE and bias of snow depth from 2% to 12% and 57% to 75%, respectively, relative to Snow Data Assimilation System (SNODAS) and snow product from the University of Arizona. On the other hand, smaller improvements are obtained by coupling Crocus with Noah‐MP. The Coupled Noah‐MP‐Crocus reduces the snow depth bias but slightly degrades the RMSE of snow depth and snow water equivalent. The corresponding impacts in other water budget terms such as evapotranspiration, soil moisture, and streamflow, however, are mixed, pointing to the significant need to improve the coupling assumptions of these processes within land models. Overall, the interoperable coupling framework demonstrated here offers the opportunity to include more detailed snow physics and processes, and to advance data assimilation systems through improved exploitation of information from snow remote sensing instruments.
MoreTranslated text
Key words
snow model,interoperable coupling,Crocus,Noah-MP LSM,Noah LSM
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined