Novel Analytical Approach for Vertical Dynamic Response of Floating Pile Groups Based on a Fictitious Soil Pile Model
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING(2024)
Shandong Univ Sci & Technol
Abstract
A novel analytical model for the vertical dynamic response of floating pile groups is established based on a fictitious group soil pile model (FGSP). Analytical solutions of the pile-to-pile interaction factor and dynamic impedance for the FGSP are obtained by combining the superposition and matrix transform methods. The obtained solutions are then validated by comparison with model test results and published analytical solutions. A numerical analysis is further performed to examine the effects of pile and soil parameters on the dynamic response of the FGSP. Results indicate that the effects of pile end soil on the pile-to-pile interaction factor and dynamic impedance of the FGSP are significant. Consequently, the established novel analytical model has better applicability to the dynamic problems of floating pile groups due to its consideration of the effects of pile end soil.
MoreTranslated text
Key words
Floating pile groups,Fictitious soil pile,Analytical solutions,Dynamic interaction factor,Dynamic impedance
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined