WeChat Mini Program
Old Version Features

A Neighborhood-Assisted Evolutionary Algorithm for Multimodal Multi-Objective Optimization

Memetic Computing(2024)

Zhengzhou University of Light Industry

Cited 0|Views8
Abstract
Multi-modal multi-objective optimization problems (MMOPs) involve multiple Pareto sets (PSs) in decision space corresponding to the same Pareto front (PF) in objective space. The difficulty lies in locating multiple equivalent PSs while ensuring a well-converged and well-distributed PF. To address this, a neighborhood-assisted reproduction strategy is proposed. Through interactions with non-dominated solutions, the generated offspring could spread out along the PF, while ineractions with neighbors could improve the convergence ability. Importantly, individuals can participate in multiple neighborhoods, reducing the computational burden. Additionally, a neighborhood-assisted environmental selection strategy is prposed to encourage exploration of diverse solution regions, ensuring a balanced distribution of the population and preservation of multiple PSs. Comparative experiments are implemented on the CEC 2019 MMOPs test suite, and the superior performance of the proposed algorithm is demonstrated in comparison to several state-of-the-art approaches.
More
Translated text
Key words
Multimodal multi-objective optimization,Neighborhood,Evolutionary algorithm,Niching based algorithm
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined