Differentiated impacts of short-term exposure to fine particulate constituents on infectious diseases in 507 cities of Chinese children and adolescents: A nationwide time-stratified case-crossover study from 2008 to 2021

Science of The Total Environment(2024)

引用 0|浏览2
暂无评分
摘要
This study assesses the association of short-term exposure to PM2.5 (particles ≤2.5 μm) on infectious diseases among Chinese children and adolescents. Analyzing data from 507 cities (2008–2021) on 42 diseases, it focuses on PM2.5 components (black carbon (BC), ammonium (NH4+), inorganic nitrate (NO3−), organic matter (OM), and sulfate (SO42−)). PM2.5 constituents significantly associated with incidence. Sulfate showed the most substantial effect, increasing all-cause infectious disease risk by 2.72 % per interquartile range (IQR) increase. It was followed by BC (2.04 % increase), OM (1.70 %), NO3− (1.67 %), and NH4+ (0.79 %). Specifically, sulfate and BC had pronounced impacts on respiratory diseases, with sulfate linked to a 10.73 % increase in seasonal influenza risk and NO3− to a 16.39 % rise in tuberculosis. Exposure to PM2.5 also marginally increased risks for gastrointestinal, enterovirus, and vectorborne diseases like dengue (7.46 % increase with SO42−). Sexually transmitted and bloodborne diseases saw an approximate 6.26 % increase in incidence, with specific constituents linked to diseases like hepatitis C and syphilis. The study concludes that managing PM2.5 levels could substantially reduce infectious disease incidence, particularly in China's middle-northern regions. It highlights the necessity of stringent air quality standards and targeted disease prevention, aligning PM2.5 management with international guidelines for public health protection.
更多
查看译文
关键词
PM2.5,PM2.5 constituents,Infectious diseases,Child,Time series
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要