WeChat Mini Program
Old Version Features

Incremental Regression of Localization Context for Automatic Segmentation of Ossified Ligamentum Flavum from CT Data

International Journal of Computer Assisted Radiology and Surgery(2024)

Shanghai Jiao Tong University

Cited 0|Views14
Abstract
Segmentation of ossified ligamentum flavum (OLF) plays a crucial role in developing computer-assisted, image-guided systems for decompressive thoracic laminectomy. Manual segmentation is time-consuming, tedious, and label-intensive. It also suffers from inter- and intra-observer variability. Automatic segmentation is highly desired. A two-stage, localization context-aware framework is developed for automatic segmentation of ossified ligamentum flavum. In the first stage, localization heatmaps of OLFs are obtained via incremental regression. In the second stage, the obtained heatmaps are then treated as the localization context for a segmentation U-Net. Our framework can directly map a whole volumetic data to its volume-wise labels. We designed and conducted comprehensive experiments on datasets of 100 patients to evaluate the performance of the proposed method. Our method achieved an average Dice similarity coefficient of 61.2 ± 7.6
More
Translated text
Key words
Ossification of the ligament flavum,Segmentation,Incremental regression,Context-guided
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined