CT Image-Based Radiomic Analysis for Detecting PD-L1 Expression Status in Bladder Cancer Patients
ACADEMIC RADIOLOGY(2024)
Department of Radiotherapy
Abstract
Rationale and Objectives: The role of Programmed death-ligand 1 (PD-L1) expression is crucial in guiding immunotherapy selection. This study aims to develop and evaluate a radiomic model, leveraging Computed Tomography (CT) imaging, with the objective of predicting PD-L1 expression status in patients afflicted with bladder cancer. Materials and Methods: The study encompassed 183 subjects diagnosed with histologically confirmed bladder cancer, among which the PD-L1(+) cohort constituted 60.1% of the total population. Stratified random sampling was utilized at a 7:3 ratio. We employed five diverse machine learning algorithms-Decision Tree, Random Forest, Linear Support Vector Classification, Support Vector Machine, and Logistic Regression-to establish radiomic models on the training dataset. These models endeavored to predict PD-L1 expression status premised on radiomic features derived from region-of-interest segmentation. Subsequent to this, the predictive performance of these models was examined on a validation set employing the receiver operating characteristic (ROC) curve. The DeLong test was utilized to contrast ROC curves, thereby pinpointing the model with superior predictive accuracy. Results: 16 features were chosen for the model construction. All five models revealed strong performance in the training set (AUC, 0.920-1) and commendable predictive ability in the validation set (AUC, 0.753-0.766). As per the DeLong test, no statistically significant disparities were observed among any of the models (P > 0.05) in the validation set. Additional verification through the calibration curve and decision curve analysis indicated that the Logistic Regression model exhibited extraordinary precision and practicality. Conclusion: Our machine learning model, grounded on radiomic features, demonstrated its proficiency in accurately distinguishing bladder cancer patients with high PD-L1 expression. Future research, incorporating more exhaustive datasets, could potentially augment the predictive efficiency of radiomic algorithms, thereby advancing their clinical utility.
MoreTranslated text
Key words
Radiomics,PD-L1,Bladder Cancer,CT Imaging,Prediction Model
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined