WeChat Mini Program
Old Version Features
Activate VIP¥0.73/day
Master AI Research

Customized Crop Feature Construction Using Genetic Programming for Early- and In-Season Crop Mapping

COMPUTERS AND ELECTRONICS IN AGRICULTURE(2025)

Cited 0|Views33
Abstract
Early- and in-season crop mapping provides vital information for precision agriculture. It is still a challenge for early- and in-season crop mapping because of the limited available images and similar spectral information. This study aims to enhance early- and in-season crop mapping by developing a Genetic Programming (GP) method to construct customized crop features. GP automatically generated candidate features for the target-crop using early- or in-season images, selected programs with substantial value disparities between target and non-target crops through the fitness function, and finally outputted the customized feature after the evolutionary process. These customized features were then compared with commonly used spectral bands and vegetation indices to evaluate their effectiveness for early- and in-season crop mapping. The results proved that the customized crop features had significant advantages in both early- and in-season crop mapping. The early-season accuracy in April after crop planting was 3.97% to 9.53% higher than spectral features and vegetation indices. Based on the incremental classification for the in-season crop mapping, the customized crop features maintained the best performance. Advantages of customized crop features include the ability to automatically select effective bands of useful months without requiring expert knowledge, the ability to catch and enlarge the subtle spectral differences with the early- and in-season images, and the little information redundancy compared with spectral features and vegetation indices. It can be concluded that the customized crop features are outstanding for early- and in-season crop mapping.
More
Translated text
Key words
Remote Sensing,Crop mapping,Genetic Programming,Feature Construction,Customized feature
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined