WeChat Mini Program
Old Version Features

Evolution-based Feature Selection for Predicting Dissolved Oxygen Concentrations in Lakes

Lecture Notes in Computer Science(2024)

Univ Pittsburgh

Cited 0|Views34
Abstract
Accurate prediction of dissolved oxygen (DO) concentrations in lakes requires a comprehensive study of phenological patterns across ecosystems, highlighting the need for precise selection of interactions amongst external factors and internal physical-chemical-biological variables. This paper presents the Multi-population Cognitive Evolutionary Search (MCES), a novel evolutionary algorithm for complex feature interaction selection problems. MCES allows models within every population to evolve adaptively, selecting relevant feature interactions for different lake types and tasks. Evaluated on diverse lakes in the Midwestern USA, MCES not only consistently produces accurate predictions with few observed labels but also, through gene maps of models, reveals sophisticated phenological patterns of different lake types, embodying the innovative concept of "AI from nature, for nature".
More
Translated text
Key words
Ecosystem modeling,Adaptive learning,Feature selection
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文提出了一种名为Nature-Guided Cognitive Evolution (NGCE)的新策略,通过将适应性学习与自然过程相结合,有效预测温带湖泊中的溶解氧浓度,其创新之处在于融合了代谢过程模型和多群体认知进化搜索,以及跨群体和个体内的特征交互变异。

方法】:该策略首先使用代谢过程模型生成模拟的溶解氧标签,然后通过多群体认知进化搜索,使模型类似于自然生物,适应性地进化以在不同湖泊类型和任务中选择相关的特征交互。

实验】:研究在美国中西部湖泊进行了每日溶解氧浓度的预测性能测试。这些湖泊大小、深度和营养状态各不相同,代表了广泛的温带湖泊。结果显示,NGCE策略不仅使用少量的观测标签就能产生准确的预测,而且通过模型的基因图揭示了不同湖泊的复杂物候模式。