Actionable Code Smell Identification with Fusion Learning of Metrics and Semantics
EXPERT SYSTEMS WITH APPLICATIONS(2025)
Hangzhou Dianzi Univ
Abstract
Code smell detection is one of the essential tasks in the field of software engineering. Identifying whether a code snippet has a code smell is subjective and varies by programming language, developer, and development method. Moreover, developers tend to focus on code smells that have a real impact on development and ignore insignificant ones. However, existing static code analysis tools and code smell detection approaches exhibit a high false positive rate in detecting code smells, which makes insignificant smells drown out those smells that developers value. Therefore, accurately reporting those actionable code smells that developers tend to spend energy on refactoring can prevent developers from getting lost in the sea of smells and improve refactoring efficiency. In this paper, we aim to detect actionable code smells that developers tend to refactor. Specifically, we first collect actionable and non-actionable code smells from projects with numerous historical versions to construct our datasets. Then, we propose a dual-stream model for fusion learning of code metrics and code semantics to detect actionable code smells. On the one hand, code metrics quantify the code's structure and even some rules or patterns, providing fundamental information for detecting code smells. On the other hand, code semantics encompass information about developers' refactoring tendencies, which prove valuable in detecting actionable code smells. Extensive experiments show that our approach can detect actionable code smells more accurately compared to existing approaches.
MoreTranslated text
Key words
AST-based metrics,Structural metrics,Syntax metrics,Semantic metrics,Code smell identification
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined