Assembled/Disassembled Modular Scaffolds for Multicellular Tissue Engineering.

Advanced materials (Deerfield Beach, Fla.)(2024)

引用 0|浏览14
暂无评分
摘要
The behavior of tissue resident cells can be influenced by the spatial arrangement of cellular interactions. Therefore, it is of significance to precisely control the spatial organization of various cells within multicellular constructs. It remains challenging to construct a versatile multicellular scaffold with ordered spatial organization of multiple cell types. Herein, a modular multicellular tissue engineering scaffold with ordered spatial distribution of different cell types is constructed by assembling varying cell-laden modules. Interestingly, the modular scaffolds can be disassembled into individual modules to evaluate the specific contribution of each cell type in the system. Through assembling cell-laden modules, the macrophage-mesenchymal stem cell (MSC), endothelial cell-MSC, and chondrocyte-MSC co-culture models are successfully established. The in vitro results indicate that the intercellular cross-talk can promote the proliferation and differentiation of each cell type in the system. Moreover, MSCs in the modular scaffolds may regulate the behavior of chondrocytes through the nuclear factor of activated T-Cells (NFAT) signaling pathway. Furthermore, the modular scaffolds loaded with co-cultured chondrocyte-MSC exhibit enhanced regeneration ability of osteochondral tissue, compared with other groups. Overall, this work offers a promising strategy to construct a multicellular tissue engineering scaffold for the systematic investigation of intercellular cross-talk and complex tissue engineering.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要